

Student Robotics Competition Software

User Guide

For a guide to using the SRComp suite as a whole, readers are directed to the
main SRComp wiki [https://github.com/PeterJCLaw/srcomp/wiki] which address
the suite as a whole.

	Introduction

	History

	Compstate Repositories

	Schedule
	Match Slots

	Match Periods

	Delays

	Staging

API Reference

	API
	Arenas

	Competition

	Knockout Schedulers

	Match Period

	Match Period Clock

	Matches

	Raw Compstate

	Scores

	Teams

	Validation

	Venue

	Winners

	YAML Loader

Indices and tables

	Index

	Module Index

	Search Page

Introduction

The Student Robotics Competition Software, or SRComp, is a suite of software
for running competition events. It aims to record the entire state of the
competition in a single place and provide tooling for working with that data in
a consistent and reproducible manner.

	SRComp assumes:
	
	that you have a league section and/or a knockout section; if you have both
then the league comes first and seeds the knockout

	that you can generate fair match plan (i.e: who plays who in which match)
yourself (though it does provide some tooling to check that a plan is fair)

	SRComp includes support for:
	
	generating match schedules from match plans, by incorporating both time to
reset arenas between matches as well as planned and unexpected delays

	games with multiple participants, with graceful handling of no-shows and
disqualifications

	normalising per-game scores to allocate league scores and/or determine
knockout progression

	resolving ties

	concurrent arenas, though with the caveat that games in multiple arenas start
at the same time and are of the same length

	“shepherds”; people who fetch participants before their matches

	large-screen displays of information for shepherds

	large-screen displays of information for the audience

	web pages with information for an external audience

	web pages with information for competitors

	real-time updates of the state of the competition, including consistent
distributed hosting of the displays and HTTP API

History

SRComp was created for Student Robotics [https://studentrobotics.org]’ 2014
competition, and has been used for all subsequent competitions. It has also been
used for a number of other similar, though usually smaller, events.

SRComp continues to evolve to support the needs of Student Robotics competitions.

Compstate Repositories

Compstate repositories contain the entire state of the competition at a certain
time.

Their directory structure looks something like this:

├── arenas.yaml
├── awards.yaml
├── [deployments.yaml]
├── [external]
│ └── [any].yaml
├── league
│ └── [arena]
│ └── [match].yaml
├── knockout
│ └── [arena]
│ └── [match].yaml
├── league.yaml
├── schedule.yaml
├── scoring
│ ├── score.py
│ ├── [converter.py]
│ └── [update.html]
├── shepherding.yaml
└── teams.yaml

Schedule

Match Slots

Each match is assigned a ‘slot’ during which it will occur. The times for
the slot are generally what is advertised as the match start time, even
though the game doesn’t actually start until some way into the slot.

Match Periods

Matches are grouped into timing periods. Each period has a description,
planned start and end times, plus a time beyond which no further matches
may be scheduled.

Usually the latter time is after the scheduled end time so that it works
to allow for delays to introduce a small overrun if needed. If configured
thus, then a period which experiences no delays would end at the scheduled
end time.

Note: the end times represent the time that the last match in the period
can be scheduled to start rather then finish.

Delays

Arbitrary delays can be added to the system at any point. These work to
delay the matches that start (currently measured by their slot start)
by the given amount, and are cumulative over the course of a period.

Staging

Before a match starts each of the teams must submit their robot to the
staging area. The system is aware of are various times associated with
this:

	The earliest teams can present themselves for a match

	The time by which teams must be in staging

	How long staging is open for; equal to the difference between the above

	How long before the start of the match to signal to shepherds they
should start looking for teams

	How long before the start of the match to signal to teams they should
go to staging

API

Arenas

Arena and corner loading routines.

	
class sr.comp.arenas.Arena(name, display_name, colour)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
property colour

	Alias for field number 2

	
property display_name

	Alias for field number 1

	
property name

	Alias for field number 0

	
class sr.comp.arenas.Corner(number, colour)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
property colour

	Alias for field number 1

	
property number

	Alias for field number 0

	
sr.comp.arenas.load_arenas(filename: Path) → dict [https://docs.python.org/3/library/stdtypes.html#dict][ArenaName, Arena]

	Load arenas from a YAML file.

	Parameters

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – The filename of the YAML file to load arenas from.

	Returns

	A mapping of arena names to Arena objects.

	Return type

	collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]

	
sr.comp.arenas.load_corners(filename: Path) → dict [https://docs.python.org/3/library/stdtypes.html#dict][CornerNumber, Corner]

	Load corner colours from a YAML file.

	Parameters

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – The filename of the YAML file to load corners from.

	Returns

	A mapping of corner numbers to Corner objects.

	Return type

	collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]

Competition

Core competition functions.

	
class sr.comp.comp.SRComp(root: str [https://docs.python.org/3/library/stdtypes.html#str] | Path)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A class containing all the various parts of a competition.

	Parameters

	root (Path) – The root path of the compstate repo.

	
arenas

	A collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict] mapping arena names to
sr.comp.arenas.Arena objects.

	
awards

	A dict [https://docs.python.org/3/library/stdtypes.html#dict] mapping sr.comp.winners.Award objects to
a list [https://docs.python.org/3/library/stdtypes.html#list] of teams.

	
corners

	A collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict] mapping corner numbers to
sr.comp.arenas.Corner objects.

	
schedule

	A sr.comp.matches.MatchSchedule instance.

	
scores

	A sr.comp.scores.Scores instance.

	
state

	The current commit of the Compstate repository.

	
teams

	A mapping of TLAs to sr.comp.teams.Team objects.

	
timezone

	The timezone of the competition.

	
venue

	A sr.comp.venue.Venue instance.

	
sr.comp.comp.load_scorer(root: pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) → Type[Union[sr.comp.types.ValidatingScorer, sr.comp.types.SimpleScorer]]

	Load the scorer module from Compstate repo.

	Parameters

	root (Path) – The path to the compstate repo.

Knockout Schedulers

Knockout schedule generation.

	
class sr.comp.knockout_scheduler.base_scheduler.BaseKnockoutScheduler(schedule: MatchSchedule, scores: Scores, arenas: Iterable[ArenaName], num_teams_per_arena: int [https://docs.python.org/3/library/functions.html#int], teams: Mapping[TLA, Team], config: YAMLData)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Base class for knockout schedulers offering common functionality.

	Parameters

	
	schedule – The league schedule.

	scores – The scores.

	arenas (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The arenas.

	teams (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The teams.

	config – Custom configuration for the knockout scheduler.

	
add_knockouts() → None [https://docs.python.org/3/library/constants.html#None]

	Add the knockouts to the schedule.

Derived classes must override this method.

	
static get_match_display_name(rounds_remaining: int [https://docs.python.org/3/library/functions.html#int], round_num: int [https://docs.python.org/3/library/functions.html#int], global_num: MatchNumber) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Get a human-readable match display name.

	Parameters

	
	rounds_remaining – The number of knockout rounds remaining.

	knockout_num – The match number within the knockout round.

	global_num – The global match number.

	
get_ranking(game: Match) → list [https://docs.python.org/3/library/stdtypes.html#list][TLA]

	Get a ranking of the given match’s teams.

	Parameters

	game – A game.

	
num_teams_per_arena

	The number of spaces for teams in an arena.

This is used in building matches where we don’t yet know which teams will
actually be playing, and for filling in when there aren’t enough teams to
fill the arena.

	
class sr.comp.knockout_scheduler.KnockoutScheduler(schedule: MatchSchedule, scores: Scores, arenas: Iterable[ArenaName], num_teams_per_arena: int [https://docs.python.org/3/library/functions.html#int], teams: Mapping[TLA, Team], config: YAMLData)

	Bases: sr.comp.knockout_scheduler.base_scheduler.BaseKnockoutScheduler

A class that can be used to generate a knockout schedule based on seeding.

Due to the way the seeding logic works, this class is suitable only when
games feature four slots for competitors, with the top two progressing to
the next round.

	Parameters

	
	schedule – The league schedule.

	scores – The scores.

	arenas (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The arenas.

	num_teams_per_arena (int [https://docs.python.org/3/library/functions.html#int]) – The usual number of teams per arena.

	teams (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The teams.

	config – Custom configuration for the knockout scheduler.

	
add_knockouts() → None [https://docs.python.org/3/library/constants.html#None]

	Add the knockouts to the schedule.

Derived classes must override this method.

	
static get_rounds_remaining(prev_matches: Sized) → int [https://docs.python.org/3/library/functions.html#int]

	

	
get_winners(game: Match) → list [https://docs.python.org/3/library/stdtypes.html#list][TLA]

	Find the parent match’s winners.

	Parameters

	game – A game.

	
knockout_rounds: list [https://docs.python.org/3/library/stdtypes.html#list][list [https://docs.python.org/3/library/stdtypes.html#list][Match]]

	

	
num_teams_per_arena = 4

	Constant value due to the way the automatic seeding works.

	
class sr.comp.knockout_scheduler.StaticScheduler(*args: Any, **kwargs: Any)

	Bases: sr.comp.knockout_scheduler.base_scheduler.BaseKnockoutScheduler

A knockout scheduler which loads almost fixed data from the config. Assumes
only a single arena.

Due to the nature of its interaction with the seedings, this scheduler has a
very limited handling of dropped-out teams: it only adjusts its scheduling
for dropouts before the knockouts.

	The practical results of this dropout behaviour are:
	
	the schedule is stable when teams drop out, as this either affects the
entire knockout or none of it

	dropping out a team such that there are no longer enough seeds requires
manual changes to the schedule to remove the seeds which cannot be filled

	
add_knockouts() → None [https://docs.python.org/3/library/constants.html#None]

	Add the knockouts to the schedule.

Derived classes must override this method.

	
get_team(team_ref: StaticMatchTeamReference | None [https://docs.python.org/3/library/constants.html#None]) → TLA | None [https://docs.python.org/3/library/constants.html#None]

	

	
knockout_rounds: list [https://docs.python.org/3/library/stdtypes.html#list][list [https://docs.python.org/3/library/stdtypes.html#list][Match]]

	

Stable Random

A stable random number generator implementation.

	
class sr.comp.knockout_scheduler.stable_random.Random

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Our own random number generator that is guaranteed to be stable.

Python’s random number generator’s stability across Python versions is
complicated. Different versions will produce different results. It’s easier
right now to just have our own random number generator that’s not as good,
but is definitely stable between machines.

Note

This class is deliberately not a sub-class of random.Random [https://docs.python.org/3/library/random.html#random.Random]
since any of the functionality provided by the class (i.e. not just the
generation portion) could change between Python versions. Instead, any
additionally required functionality should be added below as needed
and _importantly_ tests for the functionality to ensure that the output
is the same on all supported platforms.

	
getrandbits(n: int [https://docs.python.org/3/library/functions.html#int]) → int [https://docs.python.org/3/library/functions.html#int]

	

	
random() → float [https://docs.python.org/3/library/functions.html#float]

	

	
seed(s: bytes [https://docs.python.org/3/library/stdtypes.html#bytes] | bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray] | memoryview [https://docs.python.org/3/library/stdtypes.html#memoryview]) → None [https://docs.python.org/3/library/constants.html#None]

	

	
shuffle(x: MutableSequence[sr.comp.knockout_scheduler.stable_random.T]) → None [https://docs.python.org/3/library/constants.html#None]

	

Match Period

Classes that are useful for dealing with match periods.

	
class sr.comp.match_period.Delay(delay, time)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
property delay

	Alias for field number 0

	
property time

	Alias for field number 1

	
class sr.comp.match_period.Match(num, display_name, arena, teams, start_time, end_time, type, use_resolved_ranking)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
property arena

	Alias for field number 2

	
property display_name

	Alias for field number 1

	
property end_time

	Alias for field number 5

	
property num

	Alias for field number 0

	
property start_time

	Alias for field number 4

	
property teams

	Alias for field number 3

	
property type

	Alias for field number 6

	
property use_resolved_ranking

	Alias for field number 7

	
class sr.comp.match_period.MatchPeriod(start_time, end_time, max_end_time, description, matches, type)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
property description

	Alias for field number 3

	
property end_time

	Alias for field number 1

	
property matches

	Alias for field number 4

	
property max_end_time

	Alias for field number 2

	
property start_time

	Alias for field number 0

	
property type

	Alias for field number 5

	
class sr.comp.match_period.MatchType(value)

	Bases: enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

An enumeration.

	
knockout = 'knockout'

	

	
league = 'league'

	

	
tiebreaker = 'tiebreaker'

	

Match Period Clock

A clock to manage match periods.

	
class sr.comp.match_period_clock.MatchPeriodClock(period: sr.comp.match_period.MatchPeriod, delays: Iterable[sr.comp.match_period.Delay])

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A clock for use in scheduling matches within a MatchPeriod.

It is generally expected that the time information here will be in the form
of datetime and timedelta instances, though any data which can be
compared and added appropriately should work.

Delay rules:

	Only delays which are scheduled after the start of the given period will
be considered.

	Delays are cumulative.

	Delays take effect as soon as their time is reached.

	
advance_time(duration: datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta]) → None [https://docs.python.org/3/library/constants.html#None]

	Make a given amount of time pass. This is expected to be called after
scheduling some matches in order to move to the next timeslot.

Note

It is assumed that the duration value will always be ‘positive’,
i.e. that time will not go backwards. The results of the duration
value being ‘negative’ are undefined.

	
property current_time: datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]

	Get the apparent current time. This is a combination of the time which
has passed (through calls to advance_time) and the delays which
have occurred.

Will raise an OutOfTimeException if either:

	the end of the period has been reached (i.e: the sum of durations
passed to advance_time has exceeded the planned duration of the
period), or

	the maximum end of the period has been reached (i.e: the current time
would be after the period’s max_end_time).

	
static delays_for_period(period: MatchPeriod, delays: Iterable[Delay]) → list [https://docs.python.org/3/library/stdtypes.html#list][Delay]

	Filter and sort a list of all possible delays to include only those
which occur after the start of the given period.

	Parameters

	
	period (MatchPeriod) – The period to get the delays for.

	delays (list [https://docs.python.org/3/library/stdtypes.html#list]) – The list of Delays to consider.

	Returns

	A sorted list of delays which occur after the start of the period.

	
iterslots(slot_duration: datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta]) → Iterator[datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]]

	Iterate through all the available timeslots of the given size within
the MatchPeriod, taking into account delays.

This is equivalent to checking the current_time and repeatedly calling
advance_time with the given duration. As a result, it is safe to
call advance_time between iterations if additional gaps between
slots are needed.

	
exception sr.comp.match_period_clock.OutOfTimeException

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

An exception representing no more time available at the competition to run
matches.

Matches

Match schedule library.

	
class sr.comp.matches.MatchSchedule(y: Any, league: LeagueMatches, teams: Mapping[TLA, sr.comp.teams.Team], num_teams_per_arena: int [https://docs.python.org/3/library/functions.html#int])

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A match schedule.

	
add_tiebreaker(scores: sr.comp.scores.Scores, time: datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) → None [https://docs.python.org/3/library/constants.html#None]

	Add a tie breaker to the league if required. Also set a tiebreaker
attribute if necessary.

	Parameters

	
	scores (Scores) – The scores for the competition.

	time (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – The time to have the tiebreaker match.

	
classmethod create(config_fname: Path, league_fname: Path, scores: Scores, arenas: Mapping[ArenaName, Arena], num_teams_per_arena: int [https://docs.python.org/3/library/functions.html#int], teams: Mapping[TLA, Team]) → TSchedule

	Create a new match schedule around the given config data.

	Parameters

	
	config_fname (Path) – The filename of the main config file.

	league_fname (Path) – The filename of the file containing the league matches.

	scores (Scores) – The scores for the competition.

	arenas (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A mapping of arena ids to Arena instances.

	num_teams_per_arena (int [https://docs.python.org/3/library/functions.html#int]) – The usual number of teams per arena.

	teams (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A mapping of TLAs to Team instances.

	
property datetime_now: datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]

	Get the current date and time, with the correct timezone.

	
delay_at(date: datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) → datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta]

	Calculates the active delay at a given date. Intended for use
only in exposing the current delay value – scheduling should be
done using a MatchPeriodClock instead.

	Parameters

	date (datetime) – The date to find the delay for.

	Returns

	A datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta] specifying the active delay.

	
property final_match: sr.comp.match_period.Match

	Get the Match for the last match of the competition.

This is the info for the ‘finals’ of the competition (i.e: the
last of the knockout matches) unless there is a tiebreaker.

	
get_staging_times(match: sr.comp.match_period.Match) → sr.comp.matches.StagingTimes

	

	
knockout_rounds: list [https://docs.python.org/3/library/stdtypes.html#list][list [https://docs.python.org/3/library/stdtypes.html#list][Match]]

	A list of the knockout matches by round. Each entry in the list
represents a round of knockout matches, such that knockout_rounds[-1]
contains a list with only one match – the final.

	
match_periods: list [https://docs.python.org/3/library/stdtypes.html#list][MatchPeriod]

	A list of the MatchPeriods which contain the matches
for the competition.

	
matches: list [https://docs.python.org/3/library/stdtypes.html#list][MatchSlot]

	A list of match slots in the schedule. Each match slot is a dict of
arena to the Match occurring in that arena.

	
matches_at(date: datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) → Iterator[sr.comp.match_period.Match]

	Get all the matches that occur around a specific date.

	Parameters

	date (datetime) – The date at which matches occur.

	Returns

	An iterable list of matches.

	
n_matches() → int [https://docs.python.org/3/library/functions.html#int]

	Get the number of matches.

	Returns

	The number of matches.

	
n_planned_league_matches

	The number of planned league matches.

	
period_at(date: datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) → MatchPeriod | None [https://docs.python.org/3/library/constants.html#None]

	Get the match period that occur around a specific date.

	Parameters

	date (datetime) – The date at which period occurs.

	Returns

	The period at that time or None.

	
remove_drop_outs(teams: Iterable[TLA | None [https://docs.python.org/3/library/constants.html#None]], since_match: MatchNumber) → list [https://docs.python.org/3/library/stdtypes.html#list][TLA | None [https://docs.python.org/3/library/constants.html#None]]

	Take a list of TLAs and replace the teams that have dropped out with
None values.

	Parameters

	
	teams (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of TLAs.

	since_match (int [https://docs.python.org/3/library/functions.html#int]) – The match number to check for drop outs from.

	Returns

	A new list containing the appropriate teams.

	
teams

	A mapping of TLAs to Team instances.

	
class sr.comp.matches.StagingOffsets

	Bases: typing_extensions.TypedDict

	
closes: datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta]

	

	
duration: datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta]

	

	
opens: datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta]

	

	
signal_shepherds: Mapping[ShepherdName, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta]]

	

	
signal_teams: datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta]

	

	
class sr.comp.matches.StagingTimes

	Bases: typing_extensions.TypedDict

	
closes: datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]

	

	
duration: datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta]

	

	
opens: datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]

	

	
signal_shepherds: Mapping[ShepherdName, datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]]

	

	
signal_teams: datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]

	

	
exception sr.comp.matches.WrongNumberOfTeams(match_n: int [https://docs.python.org/3/library/functions.html#int], arena_name: str [https://docs.python.org/3/library/stdtypes.html#str], teams: Sequence[TLA | None [https://docs.python.org/3/library/constants.html#None]], num_teams_per_arena: int [https://docs.python.org/3/library/functions.html#int])

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

	
sr.comp.matches.get_timezone(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → datetime.tzinfo [https://docs.python.org/3/library/datetime.html#datetime.tzinfo]

	

	
sr.comp.matches.parse_ranges(ranges: str [https://docs.python.org/3/library/stdtypes.html#str]) → set [https://docs.python.org/3/library/stdtypes.html#set][int [https://docs.python.org/3/library/functions.html#int]]

	Parse a comma separated list of numbers which may include ranges
specified as hyphen-separated numbers.

From https://stackoverflow.com/questions/6405208

Raw Compstate

Utilities for working with raw Compstate repositories.

	
class sr.comp.raw_compstate.RawCompstate(path: str [https://docs.python.org/3/library/stdtypes.html#str] | Path, local_only: bool [https://docs.python.org/3/library/functions.html#bool])

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Helper class to interact with a Compstate as raw files in a Git repository
on disk.

	Parameters

	
	path (Path) – The path to the Compstate repository.

	local_only (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, this disabled the pulling, committing and
pushing functionality.

	
checkout(what: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	

	
commit(commit_msg: str [https://docs.python.org/3/library/stdtypes.html#str], allow_empty: bool [https://docs.python.org/3/library/functions.html#bool] = False) → None [https://docs.python.org/3/library/constants.html#None]

	

	
commit_and_push(commit_msg: str [https://docs.python.org/3/library/stdtypes.html#str], allow_empty: bool [https://docs.python.org/3/library/functions.html#bool] = False) → None [https://docs.python.org/3/library/constants.html#None]

	

	
property deployments: list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	

	
fetch(where: str [https://docs.python.org/3/library/stdtypes.html#str] = 'origin', refspecs: Collection[str [https://docs.python.org/3/library/stdtypes.html#str]] = (), quiet: bool [https://docs.python.org/3/library/functions.html#bool] = False) → None [https://docs.python.org/3/library/constants.html#None]

	

	
get_default_branch() → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
get_score_path(match: sr.comp.match_period.Match) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Get the path to the score file for the given match.

	
git(command_pieces: Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]], err_msg: str [https://docs.python.org/3/library/stdtypes.html#str] = '', *, return_output: typing_extensions.Literal[True]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	
git(command_pieces: Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]], err_msg: str [https://docs.python.org/3/library/stdtypes.html#str] = '', return_output: typing_extensions.Literal[False] = False) → int [https://docs.python.org/3/library/functions.html#int]

	
git(command_pieces: Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]], err_msg: str [https://docs.python.org/3/library/stdtypes.html#str] = '', return_output: bool [https://docs.python.org/3/library/functions.html#bool] = False) → str [https://docs.python.org/3/library/stdtypes.html#str] | int [https://docs.python.org/3/library/functions.html#int]

	

	
has_ancestor(commit: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	

	
property has_changes: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether or not there are any changes to files in the state,
including untracked files.

	
has_commit(commit: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Whether or not the given commit is known to this repository.

	
has_descendant(commit: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	

	
is_parent(parent: str [https://docs.python.org/3/library/stdtypes.html#str], child: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	

	
property layout: sr.comp.types.LayoutData

	

	
load() → sr.comp.comp.SRComp

	Load the state as an SRComp instance.

	
load_score(match: sr.comp.match_period.Match) → sr.comp.types.ScoreData

	Load raw score data for the given match.

	
load_shepherds() → list [https://docs.python.org/3/library/stdtypes.html#list][ShepherdInfo]

	Load the shepherds’ state.

	
pull_fast_forward() → None [https://docs.python.org/3/library/constants.html#None]

	

	
push(where: str [https://docs.python.org/3/library/stdtypes.html#str], revspec: str [https://docs.python.org/3/library/stdtypes.html#str], err_msg: str [https://docs.python.org/3/library/stdtypes.html#str] = '', force: bool [https://docs.python.org/3/library/functions.html#bool] = False) → None [https://docs.python.org/3/library/constants.html#None]

	

	
reset_and_fast_forward() → None [https://docs.python.org/3/library/constants.html#None]

	

	
reset_hard() → None [https://docs.python.org/3/library/constants.html#None]

	

	
rev_parse(revision: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
save_score(match: sr.comp.match_period.Match, score: sr.comp.types.ScoreData) → None [https://docs.python.org/3/library/constants.html#None]

	Save raw score data for the given match.

	
property shepherding: sr.comp.types.ShepherdingData

	Provides access to the raw shepherding data.
Most consumers actually want to use load_shepherds instead.

	
show_changes() → None [https://docs.python.org/3/library/constants.html#None]

	

	
show_remotes() → None [https://docs.python.org/3/library/constants.html#None]

	

	
stage(file_path: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Stage the given file.

	Parameters

	file_path (Path) – A path to the file to stage. This should
either be an absolute path, or one relative
to the compstate.

	
class sr.comp.raw_compstate.ShepherdInfo

	Bases: typing_extensions.TypedDict

	
colour: Colour

	

	
name: ShepherdName

	

	
regions: list [https://docs.python.org/3/library/stdtypes.html#list][RegionName]

	

	
teams: list [https://docs.python.org/3/library/stdtypes.html#list][TLA]

	

Scores

Utilities for working with scores.

	
class sr.comp.scores.BaseScores(scores_data: Iterable[sr.comp.types.ScoreData], teams: Iterable[TLA], scorer: Type[Union[sr.comp.types.ValidatingScorer, sr.comp.types.SimpleScorer]], num_teams_per_arena: int [https://docs.python.org/3/library/functions.html#int])

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A generic class that holds scores.

	Parameters

	
	scores_data (iterable) – A collection of loaded score sheet data.

	teams (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The teams in the competition.

	scorer (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The scorer logic.

	num_teams_per_arena (int [https://docs.python.org/3/library/functions.html#int]) – The usual number of teams per arena.

	
game_points: dict [https://docs.python.org/3/library/stdtypes.html#dict][MatchId, Mapping[TLA, GamePoints]]

	Game points data for each match. Keys are tuples of the form
(arena_id, match_num), values are dict [https://docs.python.org/3/library/stdtypes.html#dict]s mapping
TLAs to the number of game points they scored.

	
game_positions: dict [https://docs.python.org/3/library/stdtypes.html#dict][MatchId, Mapping[RankedPosition, set [https://docs.python.org/3/library/stdtypes.html#set][TLA]]]

	Game position data for each match. Keys are tuples of the form
(arena_id, match_num), values are dict [https://docs.python.org/3/library/stdtypes.html#dict]s mapping
ranked positions (i.e: first is 1, etc.) to an iterable of TLAs
which have that position. Based solely on teams’ game points.

	
get_rankings(match: sr.comp.match_period.Match) → Mapping[TLA, RankedPosition]

	Return a mapping of TLAs to ranked positions for the given match.

This is an internal API – most consumers should use
Scores.get_scores instead.

	
property last_scored_match: MatchNumber | None [https://docs.python.org/3/library/constants.html#None]

	The most match with the highest id for which we have score data.

	
ranked_points: dict [https://docs.python.org/3/library/stdtypes.html#dict][MatchId, dict [https://docs.python.org/3/library/stdtypes.html#dict][TLA, ranker.LeaguePoints]]

	Normalised (aka ‘league’) points earned in each match. Keys are
tuples of the form (arena_id, match_num), values are
dict [https://docs.python.org/3/library/stdtypes.html#dict]s mapping TLAs to the number of normalised points
they would earn for that match.

	
teams: Mapping[TLA, TeamScore]

	Points for each team earned during this portion of the competition.
Maps TLAs to TeamScore instances.

	
exception sr.comp.scores.DuplicateScoresheet(match_id: Tuple[ArenaName, MatchNumber])

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

An exception that occurs if two scoresheets for the same match have been
entered.

	
exception sr.comp.scores.InvalidTeam(tla: TLA, context: str [https://docs.python.org/3/library/stdtypes.html#str])

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

An exception that occurs when a score contains an invalid team.

	
class sr.comp.scores.KnockoutScores(scores_data: Iterable[sr.comp.types.ScoreData], teams: Iterable[TLA], scorer: Type[Union[sr.comp.types.ValidatingScorer, sr.comp.types.SimpleScorer]], num_teams_per_arena: int [https://docs.python.org/3/library/functions.html#int], league_positions: Mapping[TLA, LeaguePosition])

	Bases: sr.comp.scores.BaseScores

A class which holds knockout scores.

	
static calculate_ranking(match_points: Mapping[TLA, ranker.LeaguePoints], league_positions: LeaguePositions) → dict [https://docs.python.org/3/library/stdtypes.html#dict][TLA, RankedPosition]

	Get a ranking of the given match’s teams.

	Parameters

	
	match_points – A map of TLAs to (normalised) scores.

	league_positions – A map of TLAs to league positions.

	
game_points: dict [https://docs.python.org/3/library/stdtypes.html#dict][MatchId, Mapping[TLA, GamePoints]]

	Game points data for each match. Keys are tuples of the form
(arena_id, match_num), values are dict [https://docs.python.org/3/library/stdtypes.html#dict]s mapping
TLAs to the number of game points they scored.

	
game_positions: dict [https://docs.python.org/3/library/stdtypes.html#dict][MatchId, Mapping[RankedPosition, set [https://docs.python.org/3/library/stdtypes.html#set][TLA]]]

	Game position data for each match. Keys are tuples of the form
(arena_id, match_num), values are dict [https://docs.python.org/3/library/stdtypes.html#dict]s mapping
ranked positions (i.e: first is 1, etc.) to an iterable of TLAs
which have that position. Based solely on teams’ game points.

	
get_rankings(match: sr.comp.match_period.Match) → Mapping[TLA, RankedPosition]

	Return a mapping of TLAs to ranked positions for the given match.

This is an internal API – most consumers should use
Scores.get_scores instead.

	
ranked_points: dict [https://docs.python.org/3/library/stdtypes.html#dict][MatchId, dict [https://docs.python.org/3/library/stdtypes.html#dict][TLA, ranker.LeaguePoints]]

	Normalised (aka ‘league’) points earned in each match. Keys are
tuples of the form (arena_id, match_num), values are
dict [https://docs.python.org/3/library/stdtypes.html#dict]s mapping TLAs to the number of normalised points
they would earn for that match.

	
resolved_positions

	Position data for each match which includes adjustment for ties.
Keys are tuples of the form (arena_id, match_num), values are
OrderedDicts mapping TLAs to the ranked position (i.e:
first is 1, etc.) of that team, with the winning team in the
start of the list of keys. Tie resolution is done by league position.

	
teams: Mapping[TLA, TeamScore]

	Points for each team earned during this portion of the competition.
Maps TLAs to TeamScore instances.

	
class sr.comp.scores.LeagueScores(scores_data: Iterable[ScoreData], teams: Iterable[TLA], scorer: ScorerType, num_teams_per_arena: int [https://docs.python.org/3/library/functions.html#int], extra: Mapping[TLA, TeamScore] | None [https://docs.python.org/3/library/constants.html#None] = None)

	Bases: sr.comp.scores.BaseScores

A class which holds league scores.

	
game_points: dict [https://docs.python.org/3/library/stdtypes.html#dict][MatchId, Mapping[TLA, GamePoints]]

	Game points data for each match. Keys are tuples of the form
(arena_id, match_num), values are dict [https://docs.python.org/3/library/stdtypes.html#dict]s mapping
TLAs to the number of game points they scored.

	
game_positions: dict [https://docs.python.org/3/library/stdtypes.html#dict][MatchId, Mapping[RankedPosition, set [https://docs.python.org/3/library/stdtypes.html#set][TLA]]]

	Game position data for each match. Keys are tuples of the form
(arena_id, match_num), values are dict [https://docs.python.org/3/library/stdtypes.html#dict]s mapping
ranked positions (i.e: first is 1, etc.) to an iterable of TLAs
which have that position. Based solely on teams’ game points.

	
positions

	An OrderedDict of TLAs to sr.comp.scores.LeaguePositions.

	
static rank_league(team_scores: Mapping[TLA, sr.comp.scores.TeamScore]) → Mapping[TLA, LeaguePosition]

	Given a mapping of TLA to TeamScore, returns a mapping of TLA to league
position which both allows for ties and enables their resolution
deterministically.

	
ranked_points: dict [https://docs.python.org/3/library/stdtypes.html#dict][MatchId, dict [https://docs.python.org/3/library/stdtypes.html#dict][TLA, ranker.LeaguePoints]]

	Normalised (aka ‘league’) points earned in each match. Keys are
tuples of the form (arena_id, match_num), values are
dict [https://docs.python.org/3/library/stdtypes.html#dict]s mapping TLAs to the number of normalised points
they would earn for that match.

	
teams: Mapping[TLA, TeamScore]

	Points for each team earned during this portion of the competition.
Maps TLAs to TeamScore instances.

	
class sr.comp.scores.MatchScore(match_id: 'MatchId', game: 'Mapping[TLA, GamePoints]', normalised: 'Mapping[TLA, LeaguePoints]', ranking: 'Mapping[TLA, RankedPosition]')

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
game: Mapping[TLA, GamePoints]

	

	
match_id: Tuple[ArenaName, MatchNumber]

	

	
normalised: Mapping[TLA, LeaguePoints]

	

	
ranking: Mapping[TLA, RankedPosition]

	

	
class sr.comp.scores.Scores(league: sr.comp.scores.LeagueScores, knockout: sr.comp.scores.KnockoutScores, tiebreaker: sr.comp.scores.TiebreakerScores)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A simple class which stores references to the league and knockout scores.

	
get_scores(match: Match) → MatchScore | None [https://docs.python.org/3/library/constants.html#None]

	Get the scores for a given match.

	Parameters

	match (sr.comp.match_period.Match) – A match.

	Returns

	An object describing the scores for the match, if scores have been
recorded yet. Otherwise None.

	Return type

	MatchScore | None [https://docs.python.org/3/library/constants.html#None]

	
knockout

	The KnockoutScores for the competition.

	
last_scored_match

	The match with the highest id for which we have score data.

	
league

	The LeagueScores for the competition.

	
classmethod load(root: pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], teams: Iterable[TLA], scorer: Type[Union[sr.comp.types.ValidatingScorer, sr.comp.types.SimpleScorer]], num_teams_per_arena: int [https://docs.python.org/3/library/functions.html#int]) → sr.comp.scores.Scores

	

	
tiebreaker

	The TiebreakerScores for the competition.

	
class sr.comp.scores.TeamScore(league: LeaguePoints = 0, game: GamePoints = 0)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A team score.

	Parameters

	
	league (int [https://docs.python.org/3/library/functions.html#int]) – The league points.

	game (int [https://docs.python.org/3/library/functions.html#int]) – The game points.

	
add_game_points(score: GamePoints) → GamePoints

	

	
add_league_points(points: LeaguePoints) → LeaguePoints

	

	
class sr.comp.scores.TiebreakerScores(scores_data: Iterable[sr.comp.types.ScoreData], teams: Iterable[TLA], scorer: Type[Union[sr.comp.types.ValidatingScorer, sr.comp.types.SimpleScorer]], num_teams_per_arena: int [https://docs.python.org/3/library/functions.html#int], league_positions: Mapping[TLA, LeaguePosition])

	Bases: sr.comp.scores.KnockoutScores

	
game_points: dict [https://docs.python.org/3/library/stdtypes.html#dict][MatchId, Mapping[TLA, GamePoints]]

	Game points data for each match. Keys are tuples of the form
(arena_id, match_num), values are dict [https://docs.python.org/3/library/stdtypes.html#dict]s mapping
TLAs to the number of game points they scored.

	
game_positions: dict [https://docs.python.org/3/library/stdtypes.html#dict][MatchId, Mapping[RankedPosition, set [https://docs.python.org/3/library/stdtypes.html#set][TLA]]]

	Game position data for each match. Keys are tuples of the form
(arena_id, match_num), values are dict [https://docs.python.org/3/library/stdtypes.html#dict]s mapping
ranked positions (i.e: first is 1, etc.) to an iterable of TLAs
which have that position. Based solely on teams’ game points.

	
ranked_points: dict [https://docs.python.org/3/library/stdtypes.html#dict][MatchId, dict [https://docs.python.org/3/library/stdtypes.html#dict][TLA, ranker.LeaguePoints]]

	Normalised (aka ‘league’) points earned in each match. Keys are
tuples of the form (arena_id, match_num), values are
dict [https://docs.python.org/3/library/stdtypes.html#dict]s mapping TLAs to the number of normalised points
they would earn for that match.

	
teams: Mapping[TLA, TeamScore]

	Points for each team earned during this portion of the competition.
Maps TLAs to TeamScore instances.

	
sr.comp.scores.degroup(grouped_positions: Mapping[T, Iterable[TLA]]) → OrderedDict[TLA, T]

	Given a mapping of positions to collections of teams at that position,
returns an OrderedDict of teams to their positions.

Where more than one team has a given position, they are sorted before
being inserted.

	
sr.comp.scores.get_validated_scores(scorer_cls: Type[Union[sr.comp.types.ValidatingScorer, sr.comp.types.SimpleScorer]], input_data: sr.comp.types.ScoreData) → Mapping[TLA, GamePoints]

	Helper function which mimics the behaviour from libproton.

Given a libproton 3.0 (Proton 3.0.0-rc2) compatible class this will
calculate the scores and validate the input.

	
sr.comp.scores.load_external_scores(scores_data: Iterable[sr.comp.types.ExternalScoreData], teams: Iterable[TLA]) → Mapping[TLA, sr.comp.scores.TeamScore]

	Mechanism to import additional scores from an external source.

This provides flexibility in the sources of score data.

	
sr.comp.scores.load_external_scores_data(result_dir: pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) → Iterator[sr.comp.types.ExternalScoreData]

	

	
sr.comp.scores.load_scores_data(result_dir: pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) → Iterator[sr.comp.types.ScoreData]

	

	
sr.comp.scores.results_finder(root: pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) → Iterator[pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]]

	An iterator that finds score sheet files.

Teams

Team metadata library.

	
class sr.comp.teams.Team(tla, name, rookie, dropped_out_after)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
property dropped_out_after

	Alias for field number 3

	
is_still_around(match_number: MatchNumber) → bool [https://docs.python.org/3/library/functions.html#bool]

	Check if this team is still around at a certain match.

	Parameters

	match_number (int [https://docs.python.org/3/library/functions.html#int]) – The number of the match to check.

	Returns

	True if the team is still playing.

	
property name

	Alias for field number 1

	
property rookie

	Alias for field number 2

	
property tla

	Alias for field number 0

	
sr.comp.teams.load_teams(filename: Path) → dict [https://docs.python.org/3/library/stdtypes.html#dict][TLA, Team]

	Load teams from a YAML file.

	Parameters

	filename (Path) – The filename of the YAML file to load.

	Returns

	A dictionary mapping TLAs to Team objects.

Validation

Compstate validation routines.

	
class sr.comp.validation.NaiveValidationError(message: 'str', code: 'str', level: 'ErrorLevel' = 'error')

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
code: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
level: typing_extensions.Literal[error, warning, hint] = 'error'

	

	
message: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
with_source(error_type: ErrorType, id_: object [https://docs.python.org/3/library/functions.html#object]) → sr.comp.validation.ValidationError

	

	
exception sr.comp.validation.ScheduleValidationError(message: str [https://docs.python.org/3/library/stdtypes.html#str], code: str [https://docs.python.org/3/library/stdtypes.html#str], source: str [https://docs.python.org/3/library/stdtypes.html#str] = '', level: typing_extensions.Literal[error, warning, hint] = 'error')

	Bases: sr.comp.validation.ValidationError

	
code: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
message: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
source: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][ErrorType, object [https://docs.python.org/3/library/functions.html#object]] | None [https://docs.python.org/3/library/constants.html#None]

	

	
exception sr.comp.validation.ValidationError(message: 'str', code: 'str', source: 'tuple[ErrorType, object] | None', level: 'ErrorLevel' = 'error')

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

	
code: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
level: ErrorLevel = 'error'

	

	
message: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
source: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][ErrorType, object [https://docs.python.org/3/library/functions.html#object]] | None [https://docs.python.org/3/library/constants.html#None]

	

	
sr.comp.validation.find_missing_scores(match_type: MatchType, match_ids: Iterable[MatchId], last_match: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None], schedule: Iterable[MatchSlot]) → Sequence[tuple [https://docs.python.org/3/library/stdtypes.html#tuple][MatchNumber, set [https://docs.python.org/3/library/stdtypes.html#set][ArenaName]]]

	Given a collection of match_ids for which we have scores, the
match_type currently under consideration, the number of the
last_match which was scored and the list of all known matches determine
which scores should be present but aren’t.

	
sr.comp.validation.find_teams_without_league_matches(matches: Iterable[MatchSlot], possible_teams: Iterable[TLA]) → set [https://docs.python.org/3/library/stdtypes.html#set][TLA]

	Find teams that don’t have league matches.

	Parameters

	
	matches (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of matches.

	possible_teams – A list of possible teams.

	Returns

	A set [https://docs.python.org/3/library/stdtypes.html#set] of teams without matches.

	
sr.comp.validation.join_and(items: Iterable[object [https://docs.python.org/3/library/functions.html#object]]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
sr.comp.validation.report_errors(error_type: ErrorType, id_: object [https://docs.python.org/3/library/functions.html#object], errors: list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) → None [https://docs.python.org/3/library/constants.html#None]

	Print out errors nicely formatted.

	Parameters

	
	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The human-readable ‘type’.

	id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The human-readable ‘ID’.

	errors (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of string errors.

	
sr.comp.validation.report_validation_errors(errors: Sequence[sr.comp.validation.ValidationError]) → None [https://docs.python.org/3/library/constants.html#None]

	

	
sr.comp.validation.validate(comp: sr.comp.comp.SRComp) → int [https://docs.python.org/3/library/functions.html#int]

	Validate a Compstate repo.

	Parameters

	comp (sr.comp.SRComp) – A competition instance.

	Returns

	The number of errors that have occurred.

	
sr.comp.validation.validate_match(match: MatchSlot, possible_teams: Iterable[TLA]) → Iterator[sr.comp.validation.NaiveValidationError]

	Check that the teams featuring in a match exist and are only
required in one arena at a time.

	
sr.comp.validation.validate_match_score(match_type: sr.comp.match_period.MatchType, match_score: Mapping[TLA, object [https://docs.python.org/3/library/functions.html#object]], scheduled_match: sr.comp.match_period.Match) → Iterator[sr.comp.validation.NaiveValidationError]

	Check that the match awards points to the right teams, by checking
that the teams with points were scheduled to appear in the match.

	
sr.comp.validation.validate_schedule(schedule: sr.comp.matches.MatchSchedule, possible_teams: Iterable[TLA], possible_arenas: Container[ArenaName]) → Iterator[sr.comp.validation.ValidationError]

	Check that the schedule contains enough time for all the matches,
and that the matches themselves are valid.

	
sr.comp.validation.validate_schedule_arenas(matches: Iterable[MatchSlot], possible_arenas: Container[ArenaName]) → Iterator[sr.comp.validation.ValidationError]

	Check that any arena referenced by a match actually exists.

	
sr.comp.validation.validate_schedule_count(schedule: sr.comp.matches.MatchSchedule) → Iterator[sr.comp.validation.ValidationError]

	

	
sr.comp.validation.validate_schedule_timings(scheduled_matches: Iterable[MatchSlot], match_duration: datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta]) → Iterator[sr.comp.validation.ValidationError]

	

	
sr.comp.validation.validate_scores(match_type: sr.comp.match_period.MatchType, scores: sr.comp.scores.BaseScores, schedule: Sequence[MatchSlot]) → Iterator[sr.comp.validation.ValidationError]

	Validate that the scores are sane.

	
sr.comp.validation.validate_scores_inner(match_type: sr.comp.match_period.MatchType, scores: sr.comp.scores.BaseScores, schedule: Sequence[MatchSlot]) → Iterator[sr.comp.validation.ValidationError]

	Validate that scores are sane.

	
sr.comp.validation.validate_team_matches(matches: Iterable[MatchSlot], possible_teams: Iterable[TLA]) → Iterator[sr.comp.validation.ValidationError]

	Check that all teams have been assigned league matches. We don’t need (or
want) to check the knockouts, since those are scheduled dynamically based
on the list of teams.

	
sr.comp.validation.warn_missing_scores(match_type: sr.comp.match_period.MatchType, scores: sr.comp.scores.BaseScores, schedule: Iterable[MatchSlot]) → Iterator[sr.comp.validation.ValidationError]

	Check that the scores up to the most recent are all present.

	
sr.comp.validation.with_source(naive_errors: Iterable[NaiveValidationError], source: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][ErrorType, object [https://docs.python.org/3/library/functions.html#object]]) → Iterator[ValidationError]

	

Venue

Venue layout metadata library.

	
exception sr.comp.venue.InvalidRegionException(region: RegionName, area: str [https://docs.python.org/3/library/stdtypes.html#str])

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

An exception that occurs when there are invalid regions mentioned in
the shepherding data.

	
exception sr.comp.venue.LayoutTeamsException(duplicate_teams: Iterable[TLA], extra_teams: Iterable[TLA], missing_teams: Iterable[TLA])

	Bases: sr.comp.venue.MismatchException[TLA]

An exception that occurs when there are duplicate, extra or missing
teams in a layout.

	
exception sr.comp.venue.MismatchException(tpl: str [https://docs.python.org/3/library/stdtypes.html#str], duplicates: Iterable[sr.comp.venue.T_str], extras: Iterable[sr.comp.venue.T_str], missing: Iterable[sr.comp.venue.T_str])

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception], Generic [https://docs.python.org/3/library/typing.html#typing.Generic][sr.comp.venue.T_str]

An exception that occurs when there are duplicate, extra or missing items.

	
exception sr.comp.venue.ShepherdingAreasException(where: str [https://docs.python.org/3/library/stdtypes.html#str], duplicate: Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]], extra: Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]], missing: Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]])

	Bases: sr.comp.venue.MismatchException[str [https://docs.python.org/3/library/stdtypes.html#str]]

An exception that occurs when there are duplicate, extra or missing
shepherding areas in the staging times.

	
class sr.comp.venue.Venue(teams: Iterable[TLA], layout_file: pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], shepherding_file: pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path])

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A class providing information about the layout within the venue.

	
check_staging_times(staging_times: sr.comp.matches.StagingOffsets) → None [https://docs.python.org/3/library/constants.html#None]

	

	
classmethod check_teams(teams: Iterable[TLA], teams_layout: list [https://docs.python.org/3/library/stdtypes.html#list][RegionData]) → None [https://docs.python.org/3/library/constants.html#None]

	Check that the given layout of teams contains the same set of
teams as the reference.

Will throw a LayoutTeamsException if there are any
missing, extra or duplicate teams found.

	Parameters

	
	teams (list [https://docs.python.org/3/library/stdtypes.html#list]) – The reference list of teams in the competition.

	teams_layout (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of maps with a list of teams
under the teams key.

	
get_team_location(team: TLA) → RegionName

	Get the name of the location allocated to the given team within
the venue.

	Parameters

	team (str [https://docs.python.org/3/library/stdtypes.html#str]) – The TLA of the team in question.

	Returns

	The name of the location allocated to the team.

	
locations

	A dict [https://docs.python.org/3/library/stdtypes.html#dict] of location names (from the layout file) to location
information, including which teams are in that location and the
shepherding region which contains that location.

Winners

Calculation of winners of awards.

The awards calculated are:

	1st place,

	2nd place,

	3rd place,

	Rookie award (rookie team with highest league position).

	
class sr.comp.winners.Award(value)

	Bases: enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

Award types.

These correspond with awards as specified in the rulebook.

	
committee = 'committee'

	

	
first = 'first'

	

	
image = 'image'

	

	
movement = 'movement'

	

	
rookie = 'rookie'

	

	
second = 'second'

	

	
third = 'third'

	

	
web = 'web'

	

	
sr.comp.winners.compute_awards(scores: Scores, final_match: Match, teams: Mapping[TLA, Team], path: Path | None [https://docs.python.org/3/library/constants.html#None] = None) → Winners

	Compute the awards handed out from configuration.

	Parameters

	
	scores (sr.comp.scores.Scores) – The scores.

	final_match (Match) – The match to use as the final.

	teams (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A mapping from TLAs to sr.comp.teams.Team
objects.

	Returns

	A dictionary of Award types to TLAs is returned. This may
not have a key for any award type that has not yet been
determined.

YAML Loader

YAML loading routines.

This includes parsing of dates and times properly, and also ensures the C YAML
loader is used which is necessary for optimum performance.

	
sr.comp.yaml_loader.add_time_constructor(loader: type [https://docs.python.org/3/library/functions.html#type][YAML_Loader]) → None [https://docs.python.org/3/library/constants.html#None]

	

	
sr.comp.yaml_loader.load(file_path: pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) → Any

	Load a YAML fie and return the results.

	Parameters

	file_path (Path) – The path to the YAML file.

	Returns

	The parsed contents.

	
sr.comp.yaml_loader.time_constructor(_: Any, node: yaml.nodes.Node) → datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]

	

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 sr	

 	
 	
 sr.comp	

 	
 	
 sr.comp.arenas	

 	
 	
 sr.comp.comp	

 	
 	
 sr.comp.knockout_scheduler	

 	
 	
 sr.comp.knockout_scheduler.stable_random	

 	
 	
 sr.comp.match_period	

 	
 	
 sr.comp.match_period_clock	

 	
 	
 sr.comp.matches	

 	
 	
 sr.comp.raw_compstate	

 	
 	
 sr.comp.scores	

 	
 	
 sr.comp.teams	

 	
 	
 sr.comp.validation	

 	
 	
 sr.comp.venue	

 	
 	
 sr.comp.winners	

 	
 	
 sr.comp.yaml_loader	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	add_game_points() (sr.comp.scores.TeamScore method)

 	add_knockouts() (sr.comp.knockout_scheduler.base_scheduler.BaseKnockoutScheduler method)

 	(sr.comp.knockout_scheduler.KnockoutScheduler method)

 	(sr.comp.knockout_scheduler.StaticScheduler method)

 	add_league_points() (sr.comp.scores.TeamScore method)

 	add_tiebreaker() (sr.comp.matches.MatchSchedule method)

 	
 	add_time_constructor() (in module sr.comp.yaml_loader)

 	advance_time() (sr.comp.match_period_clock.MatchPeriodClock method)

 	Arena (class in sr.comp.arenas)

 	arena (sr.comp.match_period.Match property)

 	arenas (sr.comp.comp.SRComp attribute)

 	Award (class in sr.comp.winners)

 	awards (sr.comp.comp.SRComp attribute)

B

 	
 	BaseKnockoutScheduler (class in sr.comp.knockout_scheduler.base_scheduler)

 	
 	BaseScores (class in sr.comp.scores)

C

 	
 	calculate_ranking() (sr.comp.scores.KnockoutScores static method)

 	check_staging_times() (sr.comp.venue.Venue method)

 	check_teams() (sr.comp.venue.Venue class method)

 	checkout() (sr.comp.raw_compstate.RawCompstate method)

 	closes (sr.comp.matches.StagingOffsets attribute)

 	(sr.comp.matches.StagingTimes attribute)

 	code (sr.comp.validation.NaiveValidationError attribute)

 	(sr.comp.validation.ScheduleValidationError attribute)

 	(sr.comp.validation.ValidationError attribute)

 	colour (sr.comp.arenas.Arena property)

 	(sr.comp.arenas.Corner property)

 	(sr.comp.raw_compstate.ShepherdInfo attribute)

 	
 	commit() (sr.comp.raw_compstate.RawCompstate method)

 	commit_and_push() (sr.comp.raw_compstate.RawCompstate method)

 	committee (sr.comp.winners.Award attribute)

 	compute_awards() (in module sr.comp.winners)

 	Corner (class in sr.comp.arenas)

 	corners (sr.comp.comp.SRComp attribute)

 	create() (sr.comp.matches.MatchSchedule class method)

 	current_time (sr.comp.match_period_clock.MatchPeriodClock property)

D

 	
 	datetime_now (sr.comp.matches.MatchSchedule property)

 	degroup() (in module sr.comp.scores)

 	Delay (class in sr.comp.match_period)

 	delay (sr.comp.match_period.Delay property)

 	delay_at() (sr.comp.matches.MatchSchedule method)

 	delays_for_period() (sr.comp.match_period_clock.MatchPeriodClock static method)

 	deployments (sr.comp.raw_compstate.RawCompstate property)

 	
 	description (sr.comp.match_period.MatchPeriod property)

 	display_name (sr.comp.arenas.Arena property)

 	(sr.comp.match_period.Match property)

 	dropped_out_after (sr.comp.teams.Team property)

 	DuplicateScoresheet

 	duration (sr.comp.matches.StagingOffsets attribute)

 	(sr.comp.matches.StagingTimes attribute)

E

 	
 	end_time (sr.comp.match_period.Match property)

 	(sr.comp.match_period.MatchPeriod property)

F

 	
 	fetch() (sr.comp.raw_compstate.RawCompstate method)

 	final_match (sr.comp.matches.MatchSchedule property)

 	
 	find_missing_scores() (in module sr.comp.validation)

 	find_teams_without_league_matches() (in module sr.comp.validation)

 	first (sr.comp.winners.Award attribute)

G

 	
 	game (sr.comp.scores.MatchScore attribute)

 	game_points (sr.comp.scores.BaseScores attribute)

 	(sr.comp.scores.KnockoutScores attribute)

 	(sr.comp.scores.LeagueScores attribute)

 	(sr.comp.scores.TiebreakerScores attribute)

 	game_positions (sr.comp.scores.BaseScores attribute)

 	(sr.comp.scores.KnockoutScores attribute)

 	(sr.comp.scores.LeagueScores attribute)

 	(sr.comp.scores.TiebreakerScores attribute)

 	get_default_branch() (sr.comp.raw_compstate.RawCompstate method)

 	get_match_display_name() (sr.comp.knockout_scheduler.base_scheduler.BaseKnockoutScheduler static method)

 	get_ranking() (sr.comp.knockout_scheduler.base_scheduler.BaseKnockoutScheduler method)

 	
 	get_rankings() (sr.comp.scores.BaseScores method)

 	(sr.comp.scores.KnockoutScores method)

 	get_rounds_remaining() (sr.comp.knockout_scheduler.KnockoutScheduler static method)

 	get_score_path() (sr.comp.raw_compstate.RawCompstate method)

 	get_scores() (sr.comp.scores.Scores method)

 	get_staging_times() (sr.comp.matches.MatchSchedule method)

 	get_team() (sr.comp.knockout_scheduler.StaticScheduler method)

 	get_team_location() (sr.comp.venue.Venue method)

 	get_timezone() (in module sr.comp.matches)

 	get_validated_scores() (in module sr.comp.scores)

 	get_winners() (sr.comp.knockout_scheduler.KnockoutScheduler method)

 	getrandbits() (sr.comp.knockout_scheduler.stable_random.Random method)

 	git() (sr.comp.raw_compstate.RawCompstate method)

H

 	
 	has_ancestor() (sr.comp.raw_compstate.RawCompstate method)

 	has_changes (sr.comp.raw_compstate.RawCompstate property)

 	
 	has_commit() (sr.comp.raw_compstate.RawCompstate method)

 	has_descendant() (sr.comp.raw_compstate.RawCompstate method)

I

 	
 	image (sr.comp.winners.Award attribute)

 	InvalidRegionException

 	InvalidTeam

 	
 	is_parent() (sr.comp.raw_compstate.RawCompstate method)

 	is_still_around() (sr.comp.teams.Team method)

 	iterslots() (sr.comp.match_period_clock.MatchPeriodClock method)

J

 	
 	join_and() (in module sr.comp.validation)

K

 	
 	knockout (sr.comp.match_period.MatchType attribute)

 	(sr.comp.scores.Scores attribute)

 	knockout_rounds (sr.comp.knockout_scheduler.KnockoutScheduler attribute)

 	(sr.comp.knockout_scheduler.StaticScheduler attribute)

 	(sr.comp.matches.MatchSchedule attribute)

 	
 	KnockoutScheduler (class in sr.comp.knockout_scheduler)

 	KnockoutScores (class in sr.comp.scores)

L

 	
 	last_scored_match (sr.comp.scores.BaseScores property)

 	(sr.comp.scores.Scores attribute)

 	layout (sr.comp.raw_compstate.RawCompstate property)

 	LayoutTeamsException

 	league (sr.comp.match_period.MatchType attribute)

 	(sr.comp.scores.Scores attribute)

 	LeagueScores (class in sr.comp.scores)

 	level (sr.comp.validation.NaiveValidationError attribute)

 	(sr.comp.validation.ValidationError attribute)

 	load() (in module sr.comp.yaml_loader)

 	(sr.comp.raw_compstate.RawCompstate method)

 	(sr.comp.scores.Scores class method)

 	
 	load_arenas() (in module sr.comp.arenas)

 	load_corners() (in module sr.comp.arenas)

 	load_external_scores() (in module sr.comp.scores)

 	load_external_scores_data() (in module sr.comp.scores)

 	load_score() (sr.comp.raw_compstate.RawCompstate method)

 	load_scorer() (in module sr.comp.comp)

 	load_scores_data() (in module sr.comp.scores)

 	load_shepherds() (sr.comp.raw_compstate.RawCompstate method)

 	load_teams() (in module sr.comp.teams)

 	locations (sr.comp.venue.Venue attribute)

M

 	
 	Match (class in sr.comp.match_period)

 	match_id (sr.comp.scores.MatchScore attribute)

 	match_periods (sr.comp.matches.MatchSchedule attribute)

 	matches (sr.comp.match_period.MatchPeriod property)

 	(sr.comp.matches.MatchSchedule attribute)

 	matches_at() (sr.comp.matches.MatchSchedule method)

 	MatchPeriod (class in sr.comp.match_period)

 	MatchPeriodClock (class in sr.comp.match_period_clock)

 	MatchSchedule (class in sr.comp.matches)

 	MatchScore (class in sr.comp.scores)

 	MatchType (class in sr.comp.match_period)

 	max_end_time (sr.comp.match_period.MatchPeriod property)

 	message (sr.comp.validation.NaiveValidationError attribute)

 	(sr.comp.validation.ScheduleValidationError attribute)

 	(sr.comp.validation.ValidationError attribute)

 	MismatchException

 	
 	
 module

 	sr.comp

 	sr.comp.arenas

 	sr.comp.comp

 	sr.comp.knockout_scheduler

 	sr.comp.knockout_scheduler.stable_random

 	sr.comp.match_period

 	sr.comp.match_period_clock

 	sr.comp.matches

 	sr.comp.raw_compstate

 	sr.comp.scores

 	sr.comp.teams

 	sr.comp.validation

 	sr.comp.venue

 	sr.comp.winners

 	sr.comp.yaml_loader

 	movement (sr.comp.winners.Award attribute)

N

 	
 	n_matches() (sr.comp.matches.MatchSchedule method)

 	n_planned_league_matches (sr.comp.matches.MatchSchedule attribute)

 	NaiveValidationError (class in sr.comp.validation)

 	name (sr.comp.arenas.Arena property)

 	(sr.comp.raw_compstate.ShepherdInfo attribute)

 	(sr.comp.teams.Team property)

 	
 	normalised (sr.comp.scores.MatchScore attribute)

 	num (sr.comp.match_period.Match property)

 	num_teams_per_arena (sr.comp.knockout_scheduler.base_scheduler.BaseKnockoutScheduler attribute)

 	(sr.comp.knockout_scheduler.KnockoutScheduler attribute)

 	number (sr.comp.arenas.Corner property)

O

 	
 	opens (sr.comp.matches.StagingOffsets attribute)

 	(sr.comp.matches.StagingTimes attribute)

 	
 	OutOfTimeException

P

 	
 	parse_ranges() (in module sr.comp.matches)

 	period_at() (sr.comp.matches.MatchSchedule method)

 	
 	positions (sr.comp.scores.LeagueScores attribute)

 	pull_fast_forward() (sr.comp.raw_compstate.RawCompstate method)

 	push() (sr.comp.raw_compstate.RawCompstate method)

R

 	
 	Random (class in sr.comp.knockout_scheduler.stable_random)

 	random() (sr.comp.knockout_scheduler.stable_random.Random method)

 	rank_league() (sr.comp.scores.LeagueScores static method)

 	ranked_points (sr.comp.scores.BaseScores attribute)

 	(sr.comp.scores.KnockoutScores attribute)

 	(sr.comp.scores.LeagueScores attribute)

 	(sr.comp.scores.TiebreakerScores attribute)

 	ranking (sr.comp.scores.MatchScore attribute)

 	RawCompstate (class in sr.comp.raw_compstate)

 	regions (sr.comp.raw_compstate.ShepherdInfo attribute)

 	
 	remove_drop_outs() (sr.comp.matches.MatchSchedule method)

 	report_errors() (in module sr.comp.validation)

 	report_validation_errors() (in module sr.comp.validation)

 	reset_and_fast_forward() (sr.comp.raw_compstate.RawCompstate method)

 	reset_hard() (sr.comp.raw_compstate.RawCompstate method)

 	resolved_positions (sr.comp.scores.KnockoutScores attribute)

 	results_finder() (in module sr.comp.scores)

 	rev_parse() (sr.comp.raw_compstate.RawCompstate method)

 	rookie (sr.comp.teams.Team property)

 	(sr.comp.winners.Award attribute)

S

 	
 	save_score() (sr.comp.raw_compstate.RawCompstate method)

 	schedule (sr.comp.comp.SRComp attribute)

 	ScheduleValidationError

 	Scores (class in sr.comp.scores)

 	scores (sr.comp.comp.SRComp attribute)

 	second (sr.comp.winners.Award attribute)

 	seed() (sr.comp.knockout_scheduler.stable_random.Random method)

 	ShepherdInfo (class in sr.comp.raw_compstate)

 	shepherding (sr.comp.raw_compstate.RawCompstate property)

 	ShepherdingAreasException

 	show_changes() (sr.comp.raw_compstate.RawCompstate method)

 	show_remotes() (sr.comp.raw_compstate.RawCompstate method)

 	shuffle() (sr.comp.knockout_scheduler.stable_random.Random method)

 	signal_shepherds (sr.comp.matches.StagingOffsets attribute)

 	(sr.comp.matches.StagingTimes attribute)

 	signal_teams (sr.comp.matches.StagingOffsets attribute)

 	(sr.comp.matches.StagingTimes attribute)

 	source (sr.comp.validation.ScheduleValidationError attribute)

 	(sr.comp.validation.ValidationError attribute)

 	
 sr.comp

 	module

 	
 sr.comp.arenas

 	module

 	
 sr.comp.comp

 	module

 	
 sr.comp.knockout_scheduler

 	module

 	
 sr.comp.knockout_scheduler.stable_random

 	module

 	
 	
 sr.comp.match_period

 	module

 	
 sr.comp.match_period_clock

 	module

 	
 sr.comp.matches

 	module

 	
 sr.comp.raw_compstate

 	module

 	
 sr.comp.scores

 	module

 	
 sr.comp.teams

 	module

 	
 sr.comp.validation

 	module

 	
 sr.comp.venue

 	module

 	
 sr.comp.winners

 	module

 	
 sr.comp.yaml_loader

 	module

 	SRComp (class in sr.comp.comp)

 	stage() (sr.comp.raw_compstate.RawCompstate method)

 	StagingOffsets (class in sr.comp.matches)

 	StagingTimes (class in sr.comp.matches)

 	start_time (sr.comp.match_period.Match property)

 	(sr.comp.match_period.MatchPeriod property)

 	state (sr.comp.comp.SRComp attribute)

 	StaticScheduler (class in sr.comp.knockout_scheduler)

T

 	
 	Team (class in sr.comp.teams)

 	teams (sr.comp.comp.SRComp attribute)

 	(sr.comp.match_period.Match property)

 	(sr.comp.matches.MatchSchedule attribute)

 	(sr.comp.raw_compstate.ShepherdInfo attribute)

 	(sr.comp.scores.BaseScores attribute)

 	(sr.comp.scores.KnockoutScores attribute)

 	(sr.comp.scores.LeagueScores attribute)

 	(sr.comp.scores.TiebreakerScores attribute)

 	TeamScore (class in sr.comp.scores)

 	
 	third (sr.comp.winners.Award attribute)

 	tiebreaker (sr.comp.match_period.MatchType attribute)

 	(sr.comp.scores.Scores attribute)

 	TiebreakerScores (class in sr.comp.scores)

 	time (sr.comp.match_period.Delay property)

 	time_constructor() (in module sr.comp.yaml_loader)

 	timezone (sr.comp.comp.SRComp attribute)

 	tla (sr.comp.teams.Team property)

 	type (sr.comp.match_period.Match property)

 	(sr.comp.match_period.MatchPeriod property)

U

 	
 	use_resolved_ranking (sr.comp.match_period.Match property)

V

 	
 	validate() (in module sr.comp.validation)

 	validate_match() (in module sr.comp.validation)

 	validate_match_score() (in module sr.comp.validation)

 	validate_schedule() (in module sr.comp.validation)

 	validate_schedule_arenas() (in module sr.comp.validation)

 	validate_schedule_count() (in module sr.comp.validation)

 	
 	validate_schedule_timings() (in module sr.comp.validation)

 	validate_scores() (in module sr.comp.validation)

 	validate_scores_inner() (in module sr.comp.validation)

 	validate_team_matches() (in module sr.comp.validation)

 	ValidationError

 	Venue (class in sr.comp.venue)

 	venue (sr.comp.comp.SRComp attribute)

W

 	
 	warn_missing_scores() (in module sr.comp.validation)

 	web (sr.comp.winners.Award attribute)

 	
 	with_source() (in module sr.comp.validation)

 	(sr.comp.validation.NaiveValidationError method)

 	WrongNumberOfTeams

 nav.xhtml

 Table of Contents

 		
 Student Robotics Competition Software

 		
 Introduction

 		
 History

 		
 Compstate Repositories

 		
 Schedule

 		
 Match Slots

 		
 Match Periods

 		
 Delays

 		
 Staging

 		
 API

 		
 Arenas

 		
 Competition

 		
 Knockout Schedulers

 		
 Stable Random

 		
 Match Period

 		
 Match Period Clock

 		
 Matches

 		
 Raw Compstate

 		
 Scores

 		
 Teams

 		
 Validation

 		
 Venue

 		
 Winners

 		
 YAML Loader

_static/plus.png

_static/file.png

_static/minus.png

